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Abstract—Distributed OLTP systems execute the high-
overhead, two-phase commit (2PC) protocol at the end of every
distributed transaction. Epoch-based commit proposes that 2PC
be executed only once for all transactions processed within a time
interval called an epoch. Increasing epoch duration allows more
transactions to be processed before the common 2PC. It thus
reduces 2PC overhead per transaction, increases throughput but
also increases average transaction latency. Therefore, required is
the ability to choose the right epoch size that offers the desired
trade-off between throughput and latency. To this end, we develop
two analytical models to estimate throughput and average latency
in terms of epoch size taking into account load and failure
conditions. Simulations affirm their accuracy and effectiveness.
We then present epoch-based multi-commit which, unlike epoch-
based commit, seeks to avoid all transactions being aborted when
failures occur, and also performs identically when failures do
not occur. Our performance study identifies workload factors
that make it more effective in preventing transaction aborts and
concludes that the analytical models can be equally useful in
predicting its performance as well.

Index Terms—Distributed Databases, Transactions, Two-Phase
Commit, Epochs, Analytical solutions, Simulations, Performance
Evaluation, Throughput, Latency

I. INTRODUCTION

When a single-node database reaches its capacity limits, a
common option is to partition data across multiple nodes form-
ing a distributed database [1]. When transactions access data
within a single node, there is no need for any coordination.
However, when workloads contain distributed transactions
accessing data from multiple nodes, an atomic commitment
protocol, typically two-phase commit (2PC) [2], needs to be
executed so that distributed transactions are guaranteed of
atomicity and durability when nodes are prone to failures.

Executing 2PC generally extracts a high performance cost
[3], [4]. It involves two sequential network round trips, one for
each of its phases, and two sequential durable writes. When
2PC is executed at the end of each distributed transaction, it
increases the transaction latency by an additional delay of up
to 10ms. In addition, as 2PC execution prolongs the lifetime of
a distributed transaction within the database, the potential for
data contention among transactions (distributed or otherwise)
intensifies which, in turn, leads to further performance degra-
dation. For these reasons, a significant strand of distributed
transactions research focuses on minimising the costs inflicted
by 2PC executions.

A range of solutions have been proposed, each with their
own limitations. Schism [5] attempts to minimise distributed
transactions via a workload-driven partitioning scheme. Unfor-
tunately, in real-world scenarios it is often impossible to gain
an accurate, prior knowledge on workloads. Another proposal
is to eliminate distributed transactions through dynamic data
re-partitioning [6], [7], but this incurs non-negligible run-time
overheads. Others mandate a declaration of transactions’ read
and write sets prior to their execution [8], [9], which can be
unrealistic in general settings.

A recent practical proposal is epoch-based commit [10].
Based on the widely-held notion that node failures are getting
less frequent with modern hardware, it views that 2PC need
not be executed at the end of every distributed transaction.
Instead, 2PC is executed once for all transactions that arrive
and get processed within a time interval called an epoch. Thus,
an epoch is the base unit for doing 2PC and all transactions
processed within it either commit or abort through one com-
mon 2PC execution. (This idea is a distributed extension of
group-commit proposed in [11] to reduce disk I/O latency for
single-node databases.)

The cost of one 2PC execution is thus amortised over mul-
tiple transactions processed within an epoch. Moreover, trans-
actions whose processing is completed can release their locks
instead of waiting until they commit at the epoch end; this
reduces scope for contention. They can also asynchronously
log their writes to persistent storage. The effects of all these
features are two-fold. On the up side, throughput increases
substantially - by four times (4x) as per the experiments con-
ducted in [10]. On the down side, a transaction’s results cannot
be released until the epoch end when all its writes have become
durable. This means that the earlier a transaction arrives during
an epoch, the longer it waits before its results can be released;
i.e., the average latency of transactions increases.

It is important to note that amortization of 2PC cost over
multiple transactions also tends to increase the throughput as
epoch size increases, when nodes do not fail. However, if a
node fails, then the number of transactions aborted at the end
of an epoch (which is when that failure is globally detected)
will be large if the epoch was chosen to be long; this wasted
work obviously reduces throughput. Thus, the possibility of
node failures favours shorter epochs. In fact, there is an
optimum epoch length at which throughput is maximised
which can be used if increased latency is a minor concern.



(Increased latency is acceptable for many workloads, see [12]–
[14].) On the other hand, a user may want a reasonably high
throughput as well as an acceptably moderate latency. Such
a trade-off requires the means to choose appropriate epoch
length. These requirements were left as future work in the
original paper [10] and are being fully addressed here.

We derive analytical solutions for estimating throughput and
average latency in terms of epoch length and some system
and load parameters. Estimating average latency accounts for
aborted transactions being completed in subsequent epochs.
Our derivations make certain simplifying assumptions, such
as the cluster has at most one failed node at any time which
holds if failures are independent and less frequent and if a
failed node recovers before another node fails.

The protocol of [10] proposes that all transactions executed
during an epoch be aborted in case of a node failure. This
assumes that each node has directly or indirectly accessed
the failed node at sometime during the epoch and therefore
all transactions it executed accessed some data now lost due
to failure. We examine and find this assumption to be overly
pessimistic and develop an epoch-based multi-commit version.
Each node maintains a list of nodes it interacted with, and
uploads the list to 2PC coordinator. The latter then constructs
disjoint commit groups such that a node within a given commit
group woud have interacted, directly or transitively, only with
other nodes in that group during the epoch. In case of a
node failure, only those nodes in the commit group containing
the failed node will abort their transactions and the rest will
commit the transactions they processed.

When a workload contains no distributed transaction, each
commit group will have just one node and all operative
nodes can commit their transactions in the event of a failure.
On the other extreme, if the workload has many distributed
transactions that cause every node to interact with every other
node during an epoch, then there is only one commit group
and a failure will cause all operative nodes to abort all their
transactions as in the epoch-based commit protocol. Thus,
our multi-commit version can automatically take advantage
of favourable workload conditions in the event of a failure
and avoid excessive aborts, while performing identically as
the original version during failure-free epochs.

This paper makes three major contributions. Analytical
models for estimating throughput and average latency are
developed in Section II for epoch-based commit protocol. They
allow an appropriate epoch size to be judiciously chosen for
maximum throughput or minimum latency or seeking a trade-
off between the two. Secondly, the epoch-based multi-commit
protocol is presented in Section III, together with a popular
benchmarking case study carried out to support its core design
rationale. Finally, a range of simulation experiments involving
a cluster of 64 nodes operating for a 100-day period are carried
out. They (i) demonstrate the accuracy and efficacy of the
models of Section II for choosing the appropriate epoch size,
(ii) point to workload features that can aid the multi-commit
protocol in minimising aborts when failures occur, and (iii)
affirm the effectiveness of the models in selecting the right

epoch size also for multi-commit version. Section IV presents
the strategies adopted for performance study which is followed
by the presentation and discussion of results in Section V.
Related works are summarised in Section VI and Section VII
concludes the paper.
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Fig. 1: Work and 2PC intervals of a cycle in the epoch-based
commit protocol.

II. ANALYTICAL MODELS FOR EPOCH-BASED COMMIT

A. Protocol Description

To keep the paper self-contained, we briefly describe the
protocol before presenting analytical solutions. For greater
details on the protocol, readers are referred to [10].

Consider a distributed system consisting of a coordinator
node and N,N > 1 participant nodes that are simply called
nodes. A large OLTP database is partitioned among the latter
which execute transactions and 2PC under the control of the
coordinator. A (participant) node can fail in a fail-stop manner:
it functions correctly when operative and fails only by ceasing
to be operative. The coordinator, however, is assumed to be
built reliably and never fails. More precisely, we assume that
the coordinator is internally replicated (primary-backup or
state machine replication using atomic broadcast such as [15]
or [16]), maintaining a single server abstraction.

The coordinator starts a cycle by starting an epoch timer for
an interval of a and instructs the nodes to work on transactions.
The epoch is referred to as work interval in Figure 1 during
which transactions are executed but not made durable and their
results also not released to end-users. A transaction will release
the locks it holds at the end of its execution even though it
is not committed. This reduces lock contention but makes the
effects of earlier transactions visible to the later ones. This
is not a concern as all transactions of a given work interval
commit or abort together at the end.

At the end of epoch timer a, the coordinator calls for an
execution of 2PC which, as shown in Figure 1, has two phases:
prepare and commit. In prepare phase, coordinator sends
a Prepare message to each participant node. (Messages
exchanged during 2PC are shown by blue arrows in Figure 1.)

When a node receives Prepare, it force-logs: (i) ids of
all ready-to-commit transactions it executed, and (ii) current
epoch number. (These durable writes by participants are indi-
cated in Figure 1 by red squares labelled A.) It then responds
with Prepare-Ack to the coordinator.



In the commit phase, the coordinator collects responses
from participant nodes. If any node has not replied with a
Prepare-Ack message, all nodes are instructed to abort
all transactions they executed during the work interval. Else,
the coordinator force-logs a commit record with the current
epoch number (shown as a red square labelled B in Figure 1)
and sends Commit message to all participant nodes. When a
node receives Commit message, it commits the transactions
it executed and releases the results to clients. It then sends
Commit-Ack to coordinator and awaits the latter to start the
next cycle of work and 2PC intervals.

In summary, multiple transactions are executed during the
work interval of each cycle; they are committed (or aborted)
in a common 2PC execution. The design rationale behind this
approach is that the time taken to execute even a distributed
transaction is negligibly small compared to the mean time
before failure (MTBF) of nodes. So, the probability of several
transactions being executed without encountering any node
failure, is fairly high. When the common 2PC execution leads
to commit, its overhead per committed transaction becomes
very small which, in turn, leads to an increased throughput.

Several studies [17]–[19] analysing node failures in clusters
confirm the assumption of MTBF being considerably larger
than transaction processing times. For example, Garraghan
et. al. [17] analyse Google Cloud Platform traces and find
5,056 out of 12,532 nodes exhibiting 8,954 failure events
over a 29 day period. A node’s MTBF turns out to be 12.71
hours! Another metric analysed in [17] is also relevant for our
analytical models: the mean time to repair (MTTR) is around
6-30 times smaller than MTBF. So, a failed node is most likely
to have recovered well before another failure occurs.

B. Modelling Assumptions

We make two assumptions in our analytical modelling and
derivation of expressions for estimating maximum throughput
and average latency.
Assumption 1: A failed node recovers before another node
in the system fails; i.e., between any two consecutive node
failures, there is a recovery event of the first failed node.

A common observation in the literature (e.g., [17]–[19])
is that MTBF of nodes is much larger compared to their
MTTR: a failed node is almost certain to be repaired before
the next failure occurs. This near certainty is here assumed
to be a certainty for the number of nodes typically found in
a distributed OLTP system. Thus, there is at most one failed
node in the system at any time.
Assumption 2: As soon as a node receives Prepare message
from the coordinator, it instantly completes any ongoing
transaction execution and enters the 2PC execution.

In reality, some non-zero amount of time will elapse for
a node to complete its ongoing execution (if any) and then
respond with Prepare-Ack. This assumption can lead to
an overestimation of throughput.

Our simulations do not have these assumptions and therefore
will assess the accuracy of the expressions derived.

C. Maximum Throughput

We derive an analytical expression for estimating maximum
attainable throughput by assuming that a node always has a
transaction to execute and is never idle.

A participant node fails at exponentially distributed intervals
with a low rate, ξ. The repair times are also distributed
exponentially with a higher rate η >> ξ. Recall that nodes
go through cycles, each consisting of a work interval, U ,
followed by a random 2PC interval V in which 2PC executed.
To start with, we will regard U as random (as opposed to
being fixed as a constant a as explained earlier). Denote the
probability density functions of U and V by fU (x) and fV (x),
respectively. Let also fW (x) be the convolution of fU (x) and
fV (x), i.e., the p.d.f. of the sum U + V .

During a work interval, transactions are served at rate Nµ
(transactions per unit time), if all nodes are operative, and at
rate (N−1)µ if one of them has failed. At the end of a cycle,
either the commit operation completes successfully and all
transactions executed during the work interval U depart, or a
node failure has occurred and all transactions executed during
U are aborted and remain in the system for re-execution.

The probability, α, that N operative nodes complete one
cycle successfully (i.e., with none of them failing), is

α =

∫ ∞

0

fW (x)e−Nξxdx = w̃(Nξ) = ũ(Nξ)ṽ(Nξ) , (1)

where ũ(s), ṽ(s) and w̃(s) are the Laplace transforms of
fU (x), fV (x) and fW (x), respectively.

Consider an interval between two consecutive node failures,
to be referred to as the observation period. (It is indicated for
convenience in Figure 7 in Appendix). The probability that
exactly m consecutive work and 2PC cycles are completed
successfully during the observation period is

pm = αm(1− α) . (2)

Hence, the average number of successful cycles during that
period is

m̄ =
α

1− α
. (3)

The observation period begins with the repair period of the
node that had failed. During that period there are only N − 1
operative nodes. By analogy with (1), the probability, β, that
they will complete one work and 2PC cycle before the failed
node recovers, is

β =

∫ ∞

0

fW (x)e−ηxdx = ũ(η)ṽ(η) . (4)

Consequently, the average number of consecutive cycles dur-
ing the repair period (colored red in Figure 7) is

m̄1 =
β

1− β
. (5)

The total average number of transactions departing during
these cycles, J1, is equal to

J1 = m̄1E(U)(N − 1)µ , (6)



where E(U) = −u′(0) is the average length of work intervals.
Then we have a cycle that overlaps the repair completion

instant (marked in parts with red and green in Figure 7). In
addition, if the repair instant falls during the work interval
of that cycle, then for the remainder of that interval there is
an extra node (i.e., the repaired one) available. The average
number of transactions, J2, departing during this cycle, given
that the repair is completed within it, can be expressed as

J2 = E(U)(N − 1)µ+
µ

1− β
E(U −R) , (7)

where E(U − R) is the expected remaining work interval,
given that the repair completes within the cycle. Averaging
over the distribution of U , we can write

E(U −R) =

∫ ∞

0

fU (x)

∫ x

0

(x− y)ηe−ηydydx . (8)

After carrying out the integration and substituting the result
into (7), the latter becomes

J2 = E(U)(N − 1)µ+
µ

1− β

[
E(U)− 1− ũ(η)

η

]
, (9)

where ũ(s) is the Laplace transform of fU (x).
Finally, the total average number of departures during fail-

free cycles with N operative nodes (marked green in Figure 7),
with their average number being m̄− m̄1 − 1, is given by

J3 = (m̄− m̄1 − 1)E(U)Nµ . (10)

The system throughput, T , defined as the average number
of departures per unit time, is obtained by dividing the total
average number of departures during the observation period
by the average length of the observation period :

T = (J1 + J2 + J3)Nξ . (11)

Now consider the total average number of transactions, D,
that are lost during the observation period. Losses occur either
during the initial repair period, when transactions attempt to
access the failed node, or when the last cycle in the observation
period is interrupted by the next node failure.

As soon as a transaction is admitted into a node, it produces
a list of a random number, k, of other nodes that it would need
to access. If the failed node is on that list, the transaction
is instantaneously dismissed and is lost. That procedure is
repeated with the transaction that follows, so following a
service completion there may be a series of transactions lost
instantaneously.

The probability, γ, that a transaction admitted into an
operative node has the failed node on its list is

γ =
E(k)

N − 1
, (12)

where E(k) is the average size of the list. This is a given
parameter. The average number of transactions lost instan-
taneously following a service completion during the repair
period is therefore equal to γ/(1− γ).

We conclude that the average number of transactions lost
during the m̄1 successful work and commit cycles within the
repair period is

D1 = J1
γ

1− γ
, (13)

where J1 is given by (6).
To find the average number, D2, of transactions lost during

the work and 2PC cycle overlapping the repair instant, we
proceed as in the derivation of (7), but count only the trans-
actions completed before the repair instant. This leads to the
following expression:

D2 =
(N − 1)µ

1− β

γ

1− γ

[
1

η
[1− ũ(η)]− ũ′(η)

]
. (14)

Finally, we need the average number, D3, of transactions
that are lost from the last work and commit cycle in the
observation period, the one that is interrupted by the next
failure instant. Since all transactions executed during that cycle
are lost, we can write

D3 = E(U)Nµ . (15)

The overall rate of transaction losses, D, is given by the
total average number of losses during the observation period,
divided by the average length of the observation period:

D = (D1 +D2 +D3)Nξ . (16)

The work interval U is set by the control policy as a
constant, a. On the other hand, the commit operation is
affected by communication delays, so it is more natural to
assume that V is random, possibly distributed exponentially
with mean b. In that case, we would have

ũ(s) = e−as ; ṽ(s) =
1

1 + bs
. (17)

D. Average response time

We will no longer regard that nodes always busy but assume
that transactions arrive in a Poisson stream with rate λ and,
if there are no available nodes, wait in an external FIFO
queue. After being processed, a transaction does not depart
immediately but is held in the queue until the end of the
current cycle. If commit is the 2PC outcome, all transactions
that were executed during the work interval depart together.
Otherwise, they are aborted and continue to remain in the
queue. The performance measure of interest here is the steady-
state average response time, W , defined as the interval between
the arrival of a transaction into the system and its departure.

This type of system has been referred to in the literature as a
queue with bulk services. At certain service instants, batches of
transactions are removed from the queue. More precisely, if the
size of the current batch is m and the number of transactions
present just before the service instant was n, then just after the
service instant there are n −min(n,m) transactions present.
A model where the intervals between service instants have a
general distribution and all batches have the same fixed size
was analyzed by Bailey [20] more than half a century ago.



Bailey’s result cannot be used in our case because the
number of transactions departing at a service instant, i.e. when
2PC execution completes, depends on whether a breakdown
occurred during the cycle or not, and also on whether there
were N or N−1 operative servers. We propose two estimates
for W : the first is pessimistic and can be treated as an upper
bound on the response time; the second is clearly optimistic
and will provide a lower bound.

E. Upper bound, Wu

The first estimate is obtained by assuming that the consec-
utive intervals between service instants are i.i.d. random vari-
ables distributed exponentially with mean a+b, where a is the
average work interval and b is the average 2PC interval. The
parameter of that distribution will be denoted by ν = 1/(a+b).
The reason why this is a pessimistic assumption is that the
coefficient of variation of the exponential distribution is 1,
while in practice the work interval is likely to be constant, or
nearly constant. The 2PC interval tends to be much smaller
than the work interval, so even if it is random, the coefficient
of variation of a full cycle (comprising both work and 2PC
intervals) would tend to be closer to 0 than to 1.

Under the exponential assumption, the probability that a full
cycle is not interrupted by a node failure is now approximated
by

α =
ν

Nξ + ν
. (18)

When Nξ is small, this value is very close to the one produced
by (1).

Hence, a service batch is of size 0 with probability q0 =
1− α.

Since the average period during which there are N − 1
operative servers is 1/η and the average period during which
there are N operative servers is 1/Nξ, we can say that a 2PC
interval has N − 1 operative servers with probability q1 =
αNξ/(Nξ + η), and has N servers with probability q2 =
αη/(Nξ+η). In the former case, an average of m1 = a(N −
1)µ transactions are served during the cycle, and in the latter
case m2 = aNµ transactions are served.

The above arguments support an assumption that the service
batch size, m, is equal to

m =

 0 with probability q0
m1 with probability q1
m2 with probability q2

. (19)

If m1 and m2 are not integers, their integer parts are taken.
The average batch size, B, is

B = m1q1 +m2q2 = aNµα
(N − 1)ξ + η

Nξ + η
. (20)

The necessary and sufficient condition for the stability of
the bulk service queue is that the transaction arrival rate should
be strictly less than the average service capacity:

λ < νB . (21)

When the failure rate is small and the repair rate is significantly
higher, the right-hand side of this inequality is very close to

the maximum throughput, T , obtained in the previous section.
Thus, requirement (21) is almost identical to the more accurate
stability condition λ < T .

Let πn be the steady-state probability that there are n
transactions present in the queue. Because of the bulk service
assumption, any transactions that are in fact being served, are
considered to be in the queue until the next service instant. The
number n increases by 1 at arrival instants, and it decreases
by 0, m1 or m2 at service instants. Equating the up and down
transition rates across the boundary between states n and n+1,
we obtain the following set of balance equations.

λπn = ν

m1∑
j=1

(q1 + q2)πn+j +

m2∑
j=m1+1

q2πn+j

 ;n = 0, 1, . . .

(22)
We shall obtain the general solution to this set of equations

in geometric form:
πn = Czn1 , (23)

where C and z1 are some positive constants. Substituting (23)
into (22), we find that the equations are satisfied as long as z
is a zero of the following polynomial of degree m2.

P (z) = λ− ν

m1∑
j=1

(q1 + q2)z
j +

m2∑
j=m1+1

q2z
j

 . (24)

In addition, in order that we may obtain a probability dis-
tribution, z1 must be a positive real number in the interval
0 < z1 < 1.

We have P (0) = λ > 0 and P (1) = λ−ν(m1q1+m2q2) <
0, according to (21). Therefore, P (z) has a real zero, z1, in
the interval (0, 1). This provides a normalizable solution to
the set of balance equations and allows us to write

πn = (1− z1)z
n
1 ; n = 0, 1, . . . . (25)

It is possible to prove formally that P (z) has no other zeros
in the interior of the unit disk, but this also follows from the
fact that an ergodic Markov process cannot have more than
one normalizable distribution.

The steady-state average number of transactions in the
system, L, is obtained from (25):

L =

∞∑
n=1

nπn =
z1

1− z1
. (26)

The upper bound of the average response time, Wu, is then
provided by Little’s theorem:

Wu =
L

λ
. (27)

F. Lower bound, Wd

A very simple lower bound is derived by making two
optimistic assumptions. The first is that the work interval and
2PC interval are constant, of lengths a and b, respectively. The
second is that the transactions arriving during the work interval
are cleared at the end of that cycle, while those arriving
during the commit operation are cleared during the next cycle,



provided that no breakdown occurs in the meantime. That
would be a reasonable assumption if the total average number
of arrivals during work and 2PC intervals of a cycle is smaller
than the average number that can be served by N − 1 servers
during a work interval: λ(a+ b) < a(N − 1)µ.

When the cycle duration is constant at (a + b), the proba-
bility that a cycle does not involve a node failure is

α = e−Nξ(a+b) . (28)

In that case a transaction arriving during a work interval
remains in the system for an average of half a work interval
plus 2PC interval, while an arrival during a 2PC interval
remains in the system for an average of half 2PC interval plus
a full cycle. The probabilities that an incoming transaction
arrives during a work interval or a 2PC interval are a/(a+ b)
and b/(a + b), respectively. Hence, the average sojourn time
given that the cycle is failure-free can be written as[

(
a

2
+ b)

a

a+ b
+ (

b

2
+ a+ b)

b

a+ b

]
=

a+ 3b

2
.

In the event of a node failure, the average sojourn time is
half a cycle plus a full cycle. Thus, the lower bound on the
response time becomes

Wd = α
a+ 3b

2
+ (1− α)

3(a+ b)

2
. (29)

Remember that the average work interval, a, is not a system
characteristic but is set by the operating policy. It is natural to
ask therefore, how should that interval be chosen in order to
minimize W ? On the one hand, increasing a may improve the
throughput (although that effect is mitigated by an increase
in the probability of a node failure during a full cycle). On
the other hand, transactions are kept in the system for longer.
Intuitively, there should be an optimal value for a.

Note that the lower bound (29) tends to be an increasing
function of a. Therefore, if Wd is taken as a criterion, the
optimal a is the smallest value that justifies the assumption
made above, i.e. that the average number of transactions
arriving during a cycle should be significantly smaller than the
number that N − 1 servers can serve during a work interval.
We suggest as an empirical rule-of-thumb that one should
chose the smallest a that satisfies the inequality λ(a + b) <
0.8a(N − 1)µ. This yields the value, a∗, that minimizes Wd

as
a∗ =

λb

0.8(N − 1)µ− λ
. (30)

If the upper bound is minimized, the optimal work interval
will, in general, be different. These differences will be inves-
tigated experimentally.

III. EPOCH-BASED MULTI-COMMIT

A. Rationale and Approach

Epoch-based commit assumes that uncommitted data within
any node is used, directly or indirectly, by every other node
during a work interval. Hence, all transactions executed are
aborted in case of a node failure. In reality, this assumption is

Coordinator

Node N1

Node N2

Node N3

2PCWORK

PREPARE

A

A
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c0 = {N1, N2},
c1 = {N3}

dep = {n2}

dep = {n1}

dep = {}

COMMIT

B

1
2

3

4

Fig. 2: A cycle in epoch-based multi-commit. A node’s epoch-
dependency list is indicated as dep.

pessimistic and does not always hold. For example, if a node
is to fail shortly after it starts its work interval; it would be
very unlikely that each operative node executes a distributed
transaction in that short duration and uses uncommitted data
held by the node that goes on to fail later.

Epoch-based multi-commit avoids, where possible, aborting
all transactions and thereby seeks to improve throughput
and reduce average latency. Interactions between nodes are
monitored in a lightweight, low-overhead manner to determine
whether a node needs to abort its transactions, when another
node is found to have failed. Interactions that call for aborting
of transactions, need not just be directly with the failed node
but can also be transitive in nature, as explained below.

Suppose that node Nk updates an object; these updates do
not become durable until Nk commits and will be lost if Nk

fails before that. Let Nj process a (distributed) transaction by
reading an uncommitted update at NK and updating some
local objects which are in turn read by a third Ni while
processing another transaction. If Nk crashes, Nj must abort
its transactions as some of them involved reading dirty data
from Nk; this in turn leads to cascading aborts at Ni even
though there is no direct interaction between Ni and Nk.

We will express the pattern of node interactions during each
work interval as a symmetric and transitive binary relation
between nodes. This relation is called epoch dependency and
is defined as follows: Node Ni has epoch dependency with Nj

during a given work interval if and only if: (i) Ni accesses data
from Nj during that work interval or vice versa, or (ii) there
is another Nk for that work interval such that Ni has epoch
dependency with Nk and Nk with Nj .

Two remarks are in order. First, the above definition does
not distinguish whether a node interaction involves accessing
uncommitted or committed data, even though the latter does
not call for cascading aborts. Despite some advantages in
making this distinction, we avoid it in order to keep the
overhead of monitoring node interactions as small as possible.

Secondly, epoch dependency is also reflexive by definition,
as each node accesses data from itself. So, it is an equivalence



relation defined on participant nodes. It therefore partitions
the nodes into disjoint subsets which we call commit groups:
each node is in exactly one group, any two nodes of a group
are related by epoch dependency, and no node has epoch
dependency with any node not in its own group. Therefore,
if a commit group has no failed node, then its member nodes
can commit during 2PC; otherwise, they must abort.

Referring to Figure 2, we see nodes N1 and N2 interacting
with each other during the work interval and N3 executing
no distributed transactions. So, N1 and N2 have epoch de-
pendency with each other and N3 only with itself; thus, two
commit groups, c0 = {N1, N2} and c1 = {N3}, emerge. If
N3 fails, N1 and N2 can commit their transactions because
they did not access any data from N3. If N1 fails, N2 ∈ c0
must abort its transactions, while N3 is unaffected.

A failed node can thus prevent nodes of only one group
from committing. That is, if node interactions during a work
interval lead to multiple commit groups emerging at the end,
then all nodes do not have to abort their transactions in the
event of a failure. On the other hand, if only one commit
group exists at the end of a work interval, then a node failure
will make all operative nodes to abort, i.e., the epoch-based
multi-commit defaults to the original, epoch-based commit.
For example, had N1 and/or N2 in Figure 2 interacted with
N3 during the work interval, then c0 = {N1, N2, N3} would
be the only commit group and any node failure would mean
that all other nodes aborting their transactions.

B. Motivation: TPC-C Case Study

For multi-commit protocol to minimise aborts, multiple
commit groups should emerge at the end of a work interval.
Such an outcome depends primarily on three workload charac-
teristics: (i) proportion of distributed transactions, (ii) average
number of remote nodes accessed by distributed transactions,
and (iii) node affinity or the likelihood of a transaction in
a given node accessing data in another given node due to
correlations between data partitions hosted by the two nodes.

The smaller the proportion in (i), the larger is the likelihood
of multiple groups. In the limit, if there are no distributed
transactions at all, then each commit group is a singleton
with a distinct node - as c1 in Figure 2. The smaller the
average in (ii) and the stronger the affinity, the more likely
is that multiple groups emerge even if the workload has a
higher proportion of distributed transactions. In what follows,
we consider a canonical benchmark system to motivate that
multi-commit scheme can be very useful in practical settings
and its performance is worthy of a detailed evaluation.

TPC-C is the canonical benchmark for evaluating perfor-
mance of OLTP databases [21]. It models a warehouse order-
processing application and consists of five transaction types.
Only two types, Payment and NewOrder, involve accessing
remote nodes. A Payment transaction involves updating the
payment amounts for a given warehouse and then updating
customer information. The customer belongs to remote ware-
house on another server with a 15% probability. In short,
the Payment transaction accesses at most two partitions. A

NewOrder transaction updates 5-15 items in the stock table.
Of these items, 99% are local to its home partition, while 1%
are at a remote partition.
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Fig. 3: Number of commit groups vs proportion of distributed
transactions. The red line indicates the threshold after which
single commit group is the only outcome.

In our experiment, the epoch size was fixed to 10ms and
a throughput of 300K transactions per second in a cluster
with 64 servers was assumed. Figure 3 depicts the number of
commit groups formed when the the proportion of distributed
transactions is varied from 1% to 15%. Commit groups are
numerous when the proportion does not exceed 8% which is
the typical proportion of distributed transactions encountered
in practical settings. Thus, multi-commit is indeed a practical
alternative to the original scheme.

C. Multi-Commit Protocol Description

This protocol is identical to epoch-based commit described
in Section II, except for the following two additions.

Monitoring node interactions. When node Ni executes a
distributed transaction and sends a Remote-Op message to
another node Nj , it enters the remote Nj in its local, epoch-
dependency list. Similarly, when Nj receives Remote-Op
message from Ni, it enters the latter in its list. Thus, interacting
nodes have each other in their epoch-dependency lists.

Computing commit groups. This is done by the coordinator
node if some participant node has not responded to it with
Prepare-Ack in the prepare phase of 2PC execution. Recall
that the coordinator executes 2PC at the end of work interval
by sending Prepare message to all participant nodes. (2PC
messages are shown in blue in Figure 2.) Each operative
node will, in turn, respond to the coordinator by sending a
Prepare-Ack message which will now include its epoch-
dependency list as indicated in Figure 2.

If the coordinator receives Prepare-Ack from all nodes,
then a Commit message is sent to all nodes. Otherwise, it
constructs a graph where a vertex represents a participant
node and an edge an epoch-dependency as reported within
the epoch-dependency lists it received. Commit groups are
then found by using Tarjan’s algorithm to identify strongly
connected components [22]. Participant nodes of commit
groups that contain no failed node are sent a Commit message
and the rest an Abort message. Based on the descriptions
in section III-A, it is easy to see that a node is sent Commit,
if and only if it has not interacted with a failed node directly or



transitively, during the work interval. (A proof by contradiction
is possible and not done here.)

IV. PERFORMANCE EVALUATION STRATEGIES

The principal aim of simulations is two-fold: to assess the
accuracy of the analytical models and explore circumstances
in which the epoch-based multi-commit can perform better
than the original epoch-based commit. The former will assist
database administrators in choosing a suitable work interval, a,
to accomplish their performance targets and the latter will help
to demonstrate that the multi-commit protocol is a practical
alternative to the original. Recall that multi-commit cannot
perform worse than the original in any circumstance; this
is because the former differs from the latter only when a
node fails at which time the coordinator expends a small
computational cost on trying to minimise aborts.

In assessing the efficacy of the expression for maximum
throughput, our discrete event-based simulations [23] will
follow the experimental setup in [10]: nodes will spawn a new
transaction as soon as they finish executing the current one.
Thus, the nodes are never idle and the resulting throughput
will be the maximum attainable. In measuring the average
latency, simulations will consider such values for transaction
arrival rates that the system is kept in a steady state; i.e., the
number of transactions waiting to be processed will not grow
monotonically with time. Under this steady state condition,
throughput is same as the arrival rate and hence not measured.

In our simulations, incoming transactions are distributed
ones with 10% probability which is larger than the threshold
8% observed in Figure 3 for having multiple commit groups at
the end of a work interval. Thus, we seek to explore the effects
of node-affinity when the proportion of distributed transactions
does not favour the emergence of multiple groups.

A distributed transaction interacts with one remote node
and we consider two policies for choosing that remote node:
random and paired affinity. In the former, the remote node
is randomly chosen; in the latter, nodes are paired and a
distributed transaction originating in a given node accesses the
paired node with 90% probability and a randomly chosen one
with 10% probability. Node-pairing captures data correlations
between the partitions hosted by the paired nodes.

Note that if a remote node chosen for data access is crashed,
then processing of that transaction ceases and all effects of
having processed it are undone. Such a transaction is called
‘dropped’ in Section II-C and not counted in throughput. Also,
10% of transactions accessing one remote node sets E(κ) =
0.1 in Equation (12).

The parameters of the analytical models and their values
used in simulations are summarized in Table I. A cluster size
of 64 nodes and one coordinator is similar to that used in
the experimental analysis of concurrency control protocols
in [4]. The choice of µ = 1 is guided by the fact that OLTP
transactions’ useful work consumes about one millisecond and
they seldom have user stalls, rather they are executed as stored
procedures [1]. The mean time to execute 2PC is represented
by b. To estimate b, it was assumed a disk flush takes 10µs and

database nodes are co-located within the same datacenter with
a round trip time of 1ms. Thus, as 2PC operations involve 2
sequential disk writes and 1.5 network calls before results are
released back to clients, b is set to 1.7ms. Following [17], the
mean time between failure 1/ξ and the mean time to repair
1/η are taken to be 12 hours and 30 minutes respectively.

TABLE I: Parameters of the analytical models and simulation.

Symbol Meaning Values
N Number of participant nodes 64
a Work interval (ms) 4-1800
b Mean time to commit (ms) 1.7
µ Node’s transaction service rate (txn/ms) 1
1/ξ Mean time between failure (hr) 12
1/η Mean time to repair (min) 30
E(κ) Remote servers accessed by transactions 0.1
λ† Transaction arrival rate (txn/s) 30000,40000

† Average response time model only.

Given that N = 64, it is possible to encounter more than
one failed node in simulations even though 1/ξ ≫ 1/η. (Note:
the larger the value of N , the less likely it is for Assumption
1 to hold.) Thus, any loss of accuracy due to Assumption 1
in Section II-B is assessed. Simulations measure the following
metrics:
System throughput (T): Number of transactions committed
per second.
Lost transaction rate (D): Rate at which transactions are being
aborted or dropped due to failures.
Committed transactions during failures (CTf ): Average
number of transactions committed in cycles with failures.
Average Response time (W): The response time is measured
from the point when a transaction enters the system, to the
point when it departs, after potentially several retries. Since
transaction are processed in batches and some may not be
committed in their first execution, the average value (in ms)
is computed over the simulation period.
Operational commit groups (CG): the number of commit
groups that do not contain a failed node, given that node failure
has occurred in a given cycle. It is zero for the epoch-based
commit where nodes always form one single commit group.

V. EVALUATION

Each simulation run took approximately 12 hours to com-
plete and simulated a cluster operational period of 100 days
in order to have thousands of cycles with node failures. (Note:
Experiments in [10] did not study the impact of node failures.)
For example, when a = 40 ms, 10,972 cycles had failures out
of a total of 207 million cycles simulated. So, the number of
operational commit groups reported here would be an average
of at least 10,000 values obtained. We observed up to 10 cycles
having multiple node failures when a = 1800 ms.

A. Maximum Throughput

Figure 4a plots the maximum attainable throughput values
against the work interval a which is varied from 40 to 1800
ms. Throughput estimated using the expression in Section II-C
is referred to as ‘model’ and those measured in simulations for
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Fig. 4: Maximum throughput as work interval a varied from 40 to 1800 ms.
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Fig. 5: Average response time (ms) in epoch-
based commit vs. a in ms.

epoch-based commit and epoch-based multi-commit are la-
belled as ‘original’ and ‘multi’ respectively. Simulations used
the random assignment policy when a distributed transaction
sought to interact with a remote node.

We can make three observations from Figure 4a. First,
the estimated throughput very closely tracks the simulated
values at all a. In fact, the maximum difference ever observed
was around 3.8%. This suggests that Assumptions 1 and 2
of Section II-B have a negligible impact on the accuracy and
the analytical model is nearly exact.

Secondly, throughput values of both protocols are nearly
identical. This is explained by Figure 4b that presents the
number of operative commit groups (CG) formed in cycles
with node failures. CG takes the maximum value of just 0.15
and rapidly falls as a increases. Such insignificantly small
values of CG in multi-commit are due to the proportion of
distributed transactions (10%) in the workload and the random
policy employed for choosing the node to interact with. These
two factors lead to almost all operative nodes interacting,
directly or indirectly, with the failed node by the time the work
interval a completes. This effect is more pronounced for larger
a values. Consequently, multi-commit cannot perform signifi-
cantly better than the original when nodes fail. Moreover, even
this minute performance advantage of multi-commit during
cycles with failures nearly vanishes when average throughput
is taken over all cycles, because failure-free cycles far out-
number those with failures. (Recall, when there are no failures,
multi-commit performance is identical to the original.)

Finally, the analytical expression of Section II-C can be
reliably used in choosing appropriate aT when maximum
throughput is the primary concern. For convenience, Figure 4a
is reproduced in Appendix as Figure 8 without simulated
throughput values so that throughput estimates for various a
are clear. Referring to Figure 8, we observe that throughput
does not decrease until a = 1500 ms; thus, optimal a∗T
is 1500 ms. For some workloads, a work interval around
1500 ms will offer unsatisfactory latency and be unacceptable.
Thus, finding a smaller aT that still offers an acceptable
maximum throughput may be desirable and can be guided by
the observation that increasing a need not fetch a proportional
increase in throughput. Figure 8 shows four distinct regions
where the rate of throughput increase is markedly different:

the gradient is very large, fairly large, small and very small
when a ∈ [40, 100), a ∈ [100, 300), a ∈ [300, 500) and
a ∈ [500, 1500] ms respectively.

B. Average Response Time

Our second set of experiments focus on assessing the
effectiveness of the average response time analytical models in
Sections II-E and II-F. Simulations retain the random assign-
ment policy for distributed transactions; transaction arrival rate
per second is taken to be λ = 30, 000 which is approximately
90% of the maximum throughput when a = 5ms to ensure the
system is in a steady state. Figure 5 plots the model estimates
of the lower (Wd) and upper bounds (Wu) and the simulation
values measured for epoch-based commit protocol as a is
varied from 4 to 20 ms. (The range choice for a is guided
by [10] where experiments used a = 10 ms.)

The response times measured in simulations are well within
the upper and lower bound estimates. The latter increase
linearly with a as expected. The Wu plot predicts the optimum
a for minimising the average response time as: a∗ = 6 ms
which is consistent with simulations. Though the analytical
expression for Wu (Section II-E, Equation (27)) identifies
a∗ reasonably accurately, the actual response times are much
closer to Wd as a increases and the maximum difference we
observed was 6 ms. So, to summarise, analytical expressions
for Wu and Wd are reasonably accurate in predicting a∗

and the actual response times for a ≥ a∗ respectively. The
simulation response times obtained for multi-commit were
very close to those presented for the original for reasons
explained in Section V-A and hence they are not shown.

C. Paired Affinity

We ran the maximum throughput simulation experiment
using the paired affinity selection policy for distributed trans-
actions. Figure 6a displays the number of operational commit
groups (CG) formed whenever failures occurred in a cycle. In
sharp contrast to Figure 4b, CG for multi-commit starts at a
much larger value of 35 when a = 10 ms and falls steadily to
5 as a increases to 100 ms. This suggests a strong potential
for reducing the number of aborts when failures occur.

Figure 6b plots the lost transaction rates (D) for both proto-
cols and shows that D for multi-commit is consistently smaller
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Fig. 6: Simulations under paired-affinity as work interval a varied from 10 to 100 ms.

than the original. For small a, the difference is small, because
the number of transactions lost due to failures is small for both
protocols. But as a increases, D for the original increases
almost linearly while that for multi-commit does not start
increasing significantly until a = 50 ms; at that point, multi-
commit shows 83% reduction in D with the corresponding
CG being around 17 in Figure 6a. As a increases further, CG
for multi-commit starts dropping significantly in Figure 6a and
consequently D for multi-commit starts increasing rapidly.

Finally, Figure 6c shows the average number of transactions
committed by the protocols in those cycles where node failures
occur (CTf ). From Figure 6c it is clear that multi-commit
avoids a significant number of aborts; note that CTf = 0 in the
original. However, these differences in CTf make insignificant
difference when throughput and latency are averaged over
the simulation period, because cycles without failures far
outnumber (by four orders of magnitude) those with failures
and both protocols perform identically in fail-free cycles. Thus,
the average maximum throughput and average latency for both
protocols, plotted in Figures 9a and 10a (in Appendix), are
almost identical. This implies that the analytical expressions
obtained for epoch-based commit under the random policy
have a wide applicability: comparing Figures 9a and 10b with
Figures 9b and 5 respectively suggests that those expressions
are equally applicable for (i) obtaining appropriate a for
epoch-based multi-commit, and (ii) epoch-based protocols
under paired affinity policy.

VI. RELATED WORK

Numerous approaches to improve distributed transaction
processing performance have been proposed. Workload-driven
partitioning can minimize distributed transactions [5] and dy-
namic data repartitioning can eliminate them completely [6],
[7]. Mandating determinism also avoids 2PC [8], [9], [24].
A caveat with such a mandate is that transactions’ read
and write sets be known prior to execution [25], else, a
reconnaissance phase is executed to discover these sets which
amounts to running a transaction twice. Aria [26] avoids this
caveat by using a deterministic reordering mechanism, but its
performance suffers under high contention workloads [10].
Prognosticator [27] circumvents this limitation by using sym-
bolic execution to build key-level transaction profiles.

Some systems relax consistency guarantees to achieve better
performance, offering snapshot isolation [28]–[30] or highly
available transactions [31]. Others combine concurrency con-
trol, replication, and commitment into a unified protocol to
reduce WAN round trip instances and thus decrease latency
[32]–[37]. Similarly, Parallel Commits [38] halves latency by
concurrently performing consensus round trips.

Several OLTP databases utilize epochs to exchange im-
proved throughput for higher latency. Silo uses epochs to
reduce shared memory writes [13]. Obladi combines them with
Oblivious RAM to hide access patterns [12]. STAR [39] runs
distributed and single-node transactions in different epochs.
COCO [10] leverages epochs to mitigate against the costs
of 2PC and synchronous replication. Our epoch-based multi-
commit is the first to combine epochs and data access patterns
to minimise aborts in the presence of node failures.

Constructing analytical models of data management systems
has a rich history. Objectives vary: performance prediction in
messaging systems [40], studying the behavior of concurrency
control protocols [42]–[44] , and atomic commitment proto-
cols in distributed databases [45], [46]. Our work is the first
to present analytical models for epoch-based commit.

VII. CONCLUSION

We have developed two analytical models for the epoch-
based commit protocol which allow database operators to
maximize throughput, minimize average response time, or seek
a trade-off between them. The accuracy of these models has
been validated through a simulation study that considered
a cluster of 64 nodes operating for 100 days. We also de-
veloped epoch-based multi-commit, which aims to minimise
transaction aborts in the event of node failures, but performs
identically to the original version under other circumstances.
Our simulation study affirms that multi-commit performs
better when distributed transactions originating at a given node
tend to access specific other nodes in their remote interactions.
When failures are rare, the analytical expressions derived for
the original protocol can also be used in determining the right
epoch intervals for the multi-commit version as well. Thus,
we offer a practical alternative to epoch-based commit and
analytical solutions to efficiently tune the parameter of epoch-
based commit protocols in practical settings.
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Fig. 7: Observation period with cycles having N − 1 operative
nodes, N − 1 and N operative nodes, and N operative nodes.
(Repair instant can fall anywhere in the mixed cycle.)
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Fig. 8: System throughput estimates vs. a. Green dotted
lines indicate regions with different gradients (as dis-
cussed in Section V-A).
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(a) Simulations using paired affinity.
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(b) Model using random affinity.

Fig. 9: Maximum throughput as work interval a varied from 10 to 100 ms.
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(a) Simulations with paired affinity as a is varied from 10 to 100 ms
(λ = 40, 000).
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(b) Multi-commit with paired affinity and models with random affinity
as a is varied from 4 to 20 ms (λ = 30, 000).

Fig. 10: Average response time (ms).
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