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Abstract. Concurrency control is an integral component in achieving
high performance in many-core databases. Implementing serializable trans-
action processing efficiently is challenging. One approach, serialization
graph testing (SGT) faithfully implements the conflict graph theorem by
aborting only those transactions that would actually violate serializabil-
ity (introduce a cycle), thus maintaining the required acyclic invariant.
Alternative approaches, such as two-phase locking, disallow certain valid
schedules to increase throughput, whereas SGT has the theoretically op-
timal property of accepting all and only conflict serializable schedules.
Historically, SGT was deemed unviable in practice due to the high com-
putational costs of maintaining an acyclic graph. Research has however
overturned this historical view by utilising the increased computational
power available due to modern hardware. Furthermore, a survey of 24
databases suggests that not all transactions demand conflict serializabil-
ity but different transactions can perfectly settle for different, weaker
isolation levels which typically require relatively lower overheads. Thus,
in such a mixed environment, providing only the isolation level required
of each transaction should, in theory, increase throughput and reduce
aborts. The aim of this paper is to extend SGT for mixed environments
subject to Adya’s mixing-correct theorem and demonstrate the result-
ing performance improvement. We augment the YCSB benchmark to
generate transactions with different isolation requirements. For certain
workloads, mixed serialization graph testing can achieve up to a 28%
increase in throughput and a 19% decrease in aborts over SGT.

Keywords: Databases · Concurrency Control · Weak Isolation · Serial-
ization Graph Testing · Mixing-Correct Theorem · YCSB

1 Introduction

In a database management system (DBMS) concurrency control is responsible
for ensuring the effects of concurrently executing transactions are isolated from
each other, providing each with the illusion of running alone in the DBMS. This
is captured by the correctness criteria serializability : if transactions are assumed
to be individually correct, then an execution of transactions equivalent to a serial
execution of the same transactions guarantees a correct DBMS state [1].
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Practically, DBMSs provide conflict serializability which is sufficient for guar-
anteeing serializability. Conflict serializability is based on conflicts between trans-
actions. Two transactions conflict if both operate on the same data item and at
least one operation is a write. A conflict imposes an order between transactions.
If a serial execution can be found that respects the order imposed by conflicts
then the execution is conflict serializable [1]. The goal of concurrency control
protocols can be reformulated as allowing as many theoretically possible conflict
serializable executions without reducing DBMS performance.

Implementing serializable transaction processing efficiently is difficult. The
classical approach is two-phase locking (2PL) [2]. Such pessimistic approaches
perform well under high contention, but suffer when workloads are dominated by
read-only transactions. Optimistic approaches such as timestamp ordering and
optimistic concurrency control [3] perform better in low contention workloads,
but exhibit many unnecessary aborts when contention is high. However, each
approach sacrifices a degree of concurrency to achieve higher throughput, ap-
proximating the complete space of conflict serializable executions. To illustrate
this, consider concurrent transactions TW and TR both attempt to access a sin-
gle data item, x. Assume TW holds a write lock on x, and TR wishes to read x.
Under 2PL, depending on the deadlock detection strategy used, one of TW or TR

will be aborted. Thus, discounting a perfectly legal conflict serializable schedule.

An alternative approach is serialization graph testing (SGT) [1,4]. In SGT,
the scheduler maintains an acyclic conflict graph of the execution it controls. For
each operation in a transaction, each conflict is determined and represented by
an edge in the conflict graph; a cycle check is then performed before executing
the operation, if a cycle is detected then the transaction is aborted. SGT has
the theoretically optimal property of avoiding unnecessary aborts, accepting all
conflict serializable executions. Despite its advantageous theoretical properties,
SGT has seldom been utilized in practical systems owing to the computational
costs of maintaining an acyclic graph, notably the cost of cycle checking. Recent
work has refuted this perceived wisdom. In [4] it was demonstrated how SGT
can be implemented efficiently in a many-core database, offering comparable,
and often higher, performance when compared to traditional and contemporary
concurrency control protocols.

Despite recent advances, serializable transaction processing performance of-
ten remains unsatisfactory for application demands. Another tool at DBMSs dis-
posal to increase performance is to execute transactions at weak isolation levels,
e.g., Read Committed. Here, the number of permissible schedules is increased at
the expense of potentially allowing non-serializable behavior, e.g., Fuzzy Reads.
Weak isolation is pervasive in real world systems, with most systems offering a
range of isolation levels; a comprehensive survey of the isolation levels supported
by commercial and open source databases is given in Table 1. A database that
allows concurrent transactions to be executed at different isolation levels is said
to be mixed [5]. For example, transaction TRC can run at Read Committed and
transaction TS at Serializable.
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The classical method to implement a mixed DBMS is to opt for a 2PL-variant
in which transactions to vary the duration they hold locks [6]. For example, TRC

would release read locks on data items immediately after performing the read
operation, whereas TS holds all locks until commit time. This mechanism and
others used in mixed DBMSs suffer from the same problem as their serializable
equivalents: some valid executions are prevented leading to unnecessary aborts.
This begs the question, how can SGT be extended to support transactions ex-
ecuted at weak isolation levels, whilst accepting all and only valid executions?
Such an approach would permit higher concurrency and performance. In [5] Adya
provides a graph-based system model for defining weak isolation and describes
the mixing-correct theorem, a correctness criteria for a mixed schedule. This pa-
per presents mixed serialization graph testing (MSGT), which accept all valid
schedules under the mixing-correct theorem, thus maintaining SGT’s property
of minimizing aborts. We evaluate MSGT’s performance using the YCSB bench-
mark [7] that has been adapted to generate transactions with different isolation
requirements.

The rest of the paper is structured as follows: Section 2 provides an overview
of serialization graph testing and discusses the adaptations made in [4] to op-
timize SGT for a many-core DBMS. Section 3 provides a survey of isolation
levels supported by 24 DBMSs highlighting the prevalence of mixed DBMSs and
demonstrating the utility of MSGT. Section 4 describes Adya’s mixing-correct
theorem. Section 5 presents mixed serialization graph testing. Section 6 evaluates
MSGT using the YCSB benchmark, before Section 7 concludes.

2 Serialization Graph Testing

This section presents serialization graph testing. Section 2.1 describes the con-
flict graph theorem and how it is used by SGT. In Section 2.2, the algorithmic
adjustments made in [4] are given, before Section 2.3 describes the many-core
optimized graph data structure used in [4], which serves as the basis for mixed
serialization graph testing.

2.1 Protocol Description

An execution of transactions can be represented by a schedule, a time ordered
sequence of their operations. For example, consider transactions T1, T2, and T3

shown in schedule s below.

s = w1[x] r2[x] r2[y] w1[y] w2[z] w3[z] r3[x] r3[a] w4[a] c1 c3 c2 c4

This schedule can be represented by a conflict graph CG(s), shown in Figure 1.
Nodes represent transactions and conflicting operations ai of Ti and bj of Tj

such that ai[x] < bj [x], where Ti ̸= Tj , are represented by an edge Ti → Tj ;
possible conflict pairs are (a, b) ∈ [(r, w), (w, r), (w,w)]. For example, in s, T2

reads x after T1 writes to x, thus there exists an edge from T1 to T2 in Figure 1.
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Changing the order of conflicting operations could alter the behavior of at least
one transaction. Therefore, an execution of transactions is conflict serializable
if a serial ordering of transactions that satisfies all conflict edges can be found.
Such a serial ordering exists iff the conflict graph is acyclic. This is known as
the conflict graph theorem [1]. Note, s is not conflict serializable because CG(s)
in Figure 1 contains a cycle.

Theorem 1 (Conflict Graph Theorem). A schedule s is conflict serializable
iff its corresponding conflict graph CG(s) is acyclic.

T1 T2 T3 T4

Fig. 1: Conflict graph representation of s.

SGT directly utilizes the conflict graph theorem by maintaining an acyclic
conflict graph. For each operation, conflicts are determined and edges inserted
into the graph. An important point to note is the orientation of edge insertions:
a transaction only inserts edges incoming to itself. After edge insertion, a cycle
check is performed before executing the operation. If executing the operation
would introduce a cycle the offending transaction is aborted and its edges re-
moved. At commit time, a final cycle check is executed, if no cycle is found the
transaction commits and removes its edges. In short, SGT provides serializability
by ensuring the acyclic invariant.

2.2 Algorithmic Adjustments

Due to space constraints nodes must be pruned from the conflict graph. The
SGT algorithm sketched in Section 2.1 allows transactions to commit with in-
coming edges if they pass a cycle check. Under this scheme simply deleting
nodes of committed transactions can lead to subtle serialization violations. As-
sume in Figure 1, T3 has committed and T2 is active. If T3 is removed upon
commitment, T2 may subsequently perform an operation that introduces a cycle
with T3, but which goes undetected due to T3’s removal, introducing a serializa-
tion error. To solve this, in [4] a transaction can commit iff it has no incoming
edges, else delaying until this condition is met. As transactions only insert edges
incoming to themselves, after issuing a commit request, no more incoming edges
are added. Thus, once all incoming edges are removed from the committing node,
via the parent node aborting or committing, it will not be in a cycle.

This rule also achieves two desirable properties: recoverability and order
preservation. Recoverability ensures failures do not leave the database in an
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inconsistent state. In s, T1 writes x, then T2 reads x. If T2 commits before T1,
T1 may subsequently abort, at which point T2 has read from a value that never
existed. Delaying T2’s commit until it has no incoming edges prevents this issue;
if T1 aborts then T2 is also aborted. Order preservation ensures the real-time
commit order matches the serialization order. In s, T4 overwrites the value a read
by T3, thus in the serial order: T3 → T4. If T4 commits before T3 no recoverabil-
ity issues are introduced, but the real-time commit order does not match the
serialization order. Delaying T4’s commit until it has no incoming edges avoids
this, providing users with an improved, more intuitive, experience.

2.3 Many-Core Optimizations

Many-core DBMSs use optimistic approaches as their pessimistic counterparts
suffer from poor performance as the core count increases. A common bottleneck
in optimistic approaches is an exclusive single-threaded verification phase. Re-
gards SGT, in [4] to avoid a global lock for graph operations, a data structure
with a node-local locking protocol is used. Nodes in the graph each store a trans-
action status (committed, active, aborted) and two sets of pointers representing
incoming and outgoing edges. Nodes can then be locked in two modes:

– Shared mode: transactions can concurrently access the node for edge in-
sertions, edge deletions, and cycle checking. Edge sets guarantee thread-safe
concurrent access for scans, insertions, and deletes under the shared lock.

– Exclusive mode: used for the commit-critical check for incoming edges.

The protocol works as follows: when a transaction Tx identifies a conflict with
transaction Ty it first checks if an edge already exists from Ty to Tx, if so, no
additional work is needed. Else, Tx acquires a shared lock on Ty’s node. If Ty is
active, then an edge pointer to Tx is inserted into Ty’s outgoing edge set and an
edge pointer from Ty is inserted into Tx’s incoming edge set. Tx then checks for
a cycle using a reduced depth-first search (DFS) algorithm. Reduced DFS begins
at the validating node (Tx) and traverses only the portion of the graph that is
needed; each step holds nodes in shared lock mode. At commit time, Tx acquires
an exclusive lock on its node and checks for incoming edges. If there are none,
Tx commits and shared locks are acquired on each node in Tx’s outgoing edge
set and the edge from Tx removed. Else, there exists at least one incoming edge
and the exclusive lock is released and the check is repeated. Another common
bottleneck is the reliance on a global timestamp allocator, this is avoided in [4]
by letting conflict graph nodes double up as transaction ids.

SGT requires a mechanism to derive conflicts. In [4] rows store a sequential
history of accesses. Each access stores the operation type, read or write, and the
transaction id. Decoupling the access information from the graph data structure
decreases contention. Note, sequentially ordered access is ensured by per-row
spin-locks which are released immediately after the operation completes, i.e., the
lock is not held until commit time, an improvement over lock-based approaches.

In summary, the SGT implementation in [4] uses a commit rule to simplify
node removal, decouples conflict detection, and employs a highly parallel graph
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structure that allows concurrent cycle checking. In particular, this protocol scales
well as the commit critical check only shortly blocks other threads from accessing
a node and only the part of the conflict graph needed for validation is traversed.
Lastly, it minimizes unnecessary aborts, accepting all conflict serializable sched-
ules and provides an ideal baseline for the development of MSGT.

3 Mixing in the Wild

This section motivates the development of a mixed graph-based scheduler that
minimizes unneccessary aborts by surveying the isolation levels supported by
commercial and open source DBMSs.

It is rare for practical DBMSs to offer applications only a singular isolation
level, instead permitting transactions to be run at different isolation levels. In
order to assess this claim we surveyed the isolation levels offered by 24 DBMSs
in Table 13. Classification was performed based on each database’s public doc-
umentation. We found 7 isolation levels represented: Read Uncommitted, Read
Committed, Cursor Stability, Snapshot Isolation, Consistent Read, Repeatable Read,
and Serializable. Note, the exact behavior of each isolation level is highly system-
dependent. Interestingly, we found 18 databases supported multiple isolation
levels. Of systems offering a singular isolation level Serializable was the most com-
mon; these systems were typically NewSQL [8] systems, e.g., CockroachDB [9].
This may suggest a trend away from mixed DBMSs, however, TiDB recently
added support for Consistent Read isolation [10] indicating the utility of weaker
isolation in practical systems remains.

4 Mixing Theory

This section presents the correctness criteria utilized by MSGT. Section 4.1
reproduces the system model from [5], which is used to define weak isolation
levels in Section 4.2, before the mixing-correct theorem is defined in Section 4.3.

4.1 System Model

In Adya’s system model, transactions consist of an ordered sequence of read
and write operations to an arbitrary set of data items, book-ended by a BEGIN

operation and a COMMIT or an ABORT operation. The set of items a transaction
reads from and writes to is termed its item read set and item write set. Each
write creates a version of an item, which is assigned a unique timestamp taken
from a totally ordered set (e.g., natural numbers) version i of item x is denoted
xi; hence, a multiversioned system is assumed. All data items have an initial
unborn version ⊥ produced by an initial transaction T⊥. The unborn version is

3 ∗ Indicates the default setting, a Referred to as Read Stability, b Behaves like Read
Committed due to MVCC implementation, c Implemented as Snapshot Isolation, d Re-
quires manual lock management, e Behaves like Consistent Read.
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Table 1: Isolation Levels Supported by Open Source & Commercial DBMSs.

Database Isolation Level
System RU RC CS SI CR RR S
Actian Ingres 11.0 ✓ ✓ ✓ ✗ ✗ ✓ ✓∗

Clustrix 5.2 ✗ ✓e ✗ ✗ ✗ ✓∗c ✓
CockroachDB 20.1.5 ✗ ✗ ✗ ✗ ✗ ✗ ✓∗

Google Spanner ✗ ✗ ✗ ✗ ✗ ✗ ✓∗

Greenplum 6.8 ✓b ✓∗ ✗ ✗ ✗ ✓ ✗
Dgraph 20.07 ✗ ✗ ✗ ✓∗ ✗ ✗ ✗
FaunaDB 2.12 ✗ ✗ ✗ ✓ ✗ ✗ ✓∗

Hyper ✗ ✗ ✗ ✗ ✗ ✗ ✓
IBM Db2 for z/OS 12.0 ✓ ✓a ✓∗ ✗ ✗ ✓ ✗
MySQL 8.0 ✓ ✓ ✗ ✗ ✗ ✓∗ ✓
MemGraph 1.0 ✗ ✗ ✗ ✓∗ ✗ ✗ ✗
MemSQL 7.1 ✗ ✓∗e ✗ ✗ ✗ ✗ ✗
MS SQL Server 2019 ✓ ✓∗ ✗ ✓ ✗ ✓ ✓
Neo4j 4.1 ✗ ✓∗ ✗ ✗ ✗ ✗ ✓
NuoDB 4.1 ✗ ✓ ✗ ✗ ✓∗ ✗ ✗
Oracle 11g 11.2 ✗ ✓∗ ✗ ✓ ✗ ✗ ✗
Oracle BerkeleyDB ✓ ✓ ✓ ✓ ✗ ✗ ✓
Oracle BerkeleyDB JE ✓ ✓ ✗ ✗ ✗ ✓∗ ✓

Postgres 12.4 ✓b ✓∗ ✗ ✗ ✗ ✓c ✓
SAP HANA ✗ ✓∗ ✗ ✓ ✗ ✗ ✗
SQLite 3.33 ✓ ✗ ✗ ✗ ✗ ✗ ✓∗

TiDB 4.0 ✗ ✗ ✗ ✓∗ ✓ ✗ ✗
VoltDB 10.0 ✗ ✗ ✗ ✗ ✗ ✗ ✓∗

YugaByteDB 2.2.2 ✗ ✗ ✗ ✓∗ ✗ ✗ ✓

located at the start of each item’s version order. An execution of transactions
on a database is represented by a history, H. This consists of a partial order
of events, which reflects (i) each transaction’s read and write operations, (ii)
data item versions read and written and (iii) commit or abort operations, and a
version order, which imposes a total order on committed data item versions.

There are three types of dependencies between transactions, which capture
the ways in which transactions can directly conflict. Read dependencies capture
the scenario where a transaction reads another transaction’s write. Antidepen-
dencies capture the scenario where a transaction overwrites the version another
transaction reads. Write dependencies capture the scenario where a transaction
overwrites the version another transaction writes. Their definitions are as follows:

Read-Depends Transaction Tj directly read-depends (wr) on Ti if Ti writes
some version xk and Tj reads xk.

Anti-Depends Transaction Tj directly anti-depends (rw) on Ti if Ti reads some
version xk and Tj writes x’s next version after xk in the version order.

Write-Depends Transaction Tj directly write-depends (ww) on Ti if Ti writes
some version xk and Tj writes x’s next version after xk in the version order.

Using these definitions, a history can be represented by a direct serializa-
tion graph, DSG(H). Nodes correspond to committed transactions and edges
mark direct dependencies, or conflicts, between transactions. Again the direc-
tion of these dependencies indicate the apparent order of transactions in a serial
execution. Anomalies are defined by stating properties about the DSG.
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To illustrate the difference between an Adya history and a schedule, s from Sec-
tion 2 is given again with versions accessed by each operation (version order:
[x0 ≪ x1, y0 ≪ y1, z2 ≪ z3, a0 ≪ a4]). Figure 2 shows DSG(H).

H = w1[x1] r2[x1] r2[y0] w1[y1] w2[z2] w3[z3] r3[x1] r3[a0] w4[a4] c1 c3 c2 c4

T1 T2 T3 T4
wr ww rw

wr

rw

Fig. 2: Direct serialization graph representation of H.

The above item-based model can be extended to handle predicate-based oper-
ations [5]. Database operations are frequently performed on set of items provided
a certain condition called the predicate, P holds. When a transaction executes
a read or write based on a predicate P , the database selects a version for each
item to which P applies, this is called the version set of the predicate-based
denoted as Vset(P ). A transaction Tj changes the matches of a predicate-based
read ri(Pi) if Ti overwrites a version in Vset(Pi).

4.2 Weak Isolation Levels

Using the system model in Section 4.1, definitions of isolation levels are given
via a combination of constraints and the prevention of types of cycles in the
DSG. In total 11 isolation levels are presented in [5]. To simplify discussions we
consider a subset:

– Read Uncommitted: proscribes anomaly Dirty Write (G0), the DSG cannot
contain cycles consisting entirely of write-depends edges.

– Read Committed: proscribes G0 and anomalies, (i) Aborted Read (G1a), trans-
actions cannot read data item versions created by aborted transactions, (ii)
Intermediate Reads (G1b), transactions cannot read intermediate data item
versions, and (iii) Circular Information Flow (G1c), the DSG cannot contain
cycles consisting of write-depends and read-depends edges.

– Repeatable Read: proscribes G0, G1, and Write Skew (G2-item), the DSG
cannot contain cycles containing one or more item-anti-depends edges.

– Serializable: proscribes anomalies G0, G1, and G2, the DSG cannot contain
any cycles; this extends the coverage to predicate-anti-depends edges.

4.3 Mixing of Isolation Levels

To define a correctness criteria for a mixed DBMS, a DSG variant is used to
represent a mixed history, referred to as a mixed serialization graph, MSG(H).
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A MSG only includes relevant and obligatory conflicts. A relevant conflict is a
conflict that is pertinent to a given isolation level, e.g., read-depends edges are
relevant to Read Committed transactions but not Read Uncommitted transactions.
An obligatory conflict is a conflict that is relevant to one transaction but not the
other, e.g., an item-anti-depends edge between a Read Committed transaction
and a Serializable transaction is relevant to the Serializable transaction and not
the Read Committed transaction but still must be included in the MSG. Adya
defines the edge inclusion rules for an MSG as follows:

1. Write-depends edges are relevant to all transactions regardless of isolation
level thus always included.

2. Read-depends edges are relevant for edges incoming to Read Committed,
Repeatable Read, or Serializable transactions.

3. Item-anti-depends edges are included for outgoing edges from Repeatable
Read and Serializable transactions.

4. Predicate-anti-depends edges are included for outgoing edges from Serializ-
able transactions.

Now in a mixed DBMS, a history is correct if each transaction is provided the
isolation guarantees that pertain to its level leading to the mixing-correct theo-
rem [5]. Figure 3 illustrates the differences between DSG and MSG representa-
tions of a history with the non-relevant and non-obligatory edges removed.

Theorem 2 (Mixing-Correct Theorem). A history H is mixing-correct if
MSG(H) is acyclic and phenomena G1a and G1b do not occur for Read Com-
mitted, Repeatable Read, and Serializable transactions.

T1

Serializable

T2

Read Committed

T3

Read Uncommitted

T4

Read Committed

wr ww

Fig. 3: Mixed serialization graph representation of H.

5 Mixed Serialization Graph Testing

This section presents mixed serialization graph testing. Section 5.1 describes
the protocol design. Section 5.2 outlines MSGT’s advantages and disadvantages.
Lastly, Section 5.3 gives implementation details.
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5.1 Protocol Design

MSGT blends together the SGT implementation from Section 2 with the mixing-
correct theorem from Section 4. Rather than using the graph data structure
in Section 2.3 to represent a conflict graph, in MSGT it is used to represent a
mixed serialization graph with one addition: nodes include transaction’s desired
isolation level. For each operation, conflicts are determined using the transac-
tion’s isolation level and the edge inclusion rules for a mixed serialization graph
enumerated in Section 4.3: when a transaction Ti detects a conflict with Tj it is
inserted into the mixed graph if the conflict is relevant to Ti or obligatory for
Tj . No changes are necessary to the per-row meta-data as all direct dependen-
cies can be derived from the access history. After edge insertion, a cycle check
is performed before executing the operation. If executing the operation would
introduce a cycle the offending transaction is aborted. At commit time, as in [4]
a transaction can commit if and only if it has no incoming edges. This sim-
plifies node deletion and provides order preservation. Note, recoverability in no
longer ensured as under the mixing-correct theorem it is permissible for a Read
Uncommitted transaction to read from a transaction that subsequently aborts.

5.2 Discussion

As seen in Section 3 many DBMSs offer weak isolation levels and thus a consid-
erable portion of applications are built atop such guarantees. Typically, mixed
isolation is an after thought as DBMSs chase performance, in MSGT mixed iso-
lation is a catered for as a first-class citizen. Such an approach provides a higher
degree of concurrency and hence performance, whilst also providing the optimal
property of no unnecessary aborts.

It is worth noting the utility of weak isolation is limited to applications that
can tolerate potentially non-serializable behavior. Additionally, if a workload
exhibits low contention or is designed in a manner such that anomalies provably
do not occur [11], then the additional overhead of managing the MSG has little
benefit.

5.3 Implementation Details

MSGT was implemented in our prototype in-memory DBMS which has a plug-
gable concurrency control module4. The DBMS has a pool of worker threads
and each transaction is pinned to a specific worker thread for its duration. Each
worker thread has an independent workload generator. Thus when a transaction
is committing we repeatedly execute the commit routine (check for incoming
edges).

To ensure high operation throughput under a concurrent workload data struc-
tures use atomic operations were appropriate. For safe memory reclamation in a
concurrent environment epoch-based garbage collection is used [12] and nodes’
edge sets are recycled after a transaction is committed and deleted.

4 https://github.com/jackwaudby/spaghetti

https://github.com/jackwaudby/spaghetti
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Adya’s system model is defined in terms of a multiversion model, but as the
MSGT scheduler allows transactions to optimistically read dirty records, the
possibility of cascading aborts is introduced. Unwinding writes due to cascading
aborts lead to unnecessary system load and which is not useful for both user
and system. Therefore, only one uncommitted transaction is allowed to modify
a data item. Also, the prototype DBMS does not currently support predicate-
based operations, thus an item-based read/write model is assumed. Hence, some
isolation levels, e.g., Repeatable Read can not be captured.

6 Evaluation

In this section, we experimentally compare MSGT with SGT using our prototype
in-memory DBMS. The evaluation focuses on two implementations: a graph-
based scheduler (SGT) and a mixed graph-based scheduler (MSGT).

Experiments were performed using an Azure Standard D48v3 instance with
48 virtualized CPU cores and 192GB of memory. Prior to each experiment, tables
are loaded, followed by a warm-up period, before a measurement period; both
are of configurable length, we use 60 seconds and 5 minutes respectively. We
measure the following metrics:

– Throughput: number of transactions committed per second.

– Abort rate: rate at which transactions are being aborted.

– Average latency: the latency time of committed transactions (in ms) av-
eraged across the measurement period.

Our experiments use the Yahoo! Cloud Serving Benchmark (YCSB) [7].
YCSB was originally designed to evaluate large-scale Internet applications, it
is re-purposed here as a microbenchmark to allow various aspects of an OLTP
workload to be altered. Specifically, we tweak the proportion of serializable trans-
actions, differ the contention level, and increase the core count to measure scala-
bility. YCSB has a one table with a primary key and 10 additional columns each
with 100B of random characters. For all our experiments, we use a YCSB table of
100K rows. There are two types of transaction: read or update, each contains 10
independent operations accessing 10 distinct items. Update transactions consist
of 5 reads and 5 writes that occur in random order. Read transactions consist
solely of read operations. The proportion of update transactions is controlled by
the parameter, U , it is fixed to 50% for our experiments. Data access follows a
Zipfian distribution, where the frequency of access to hot records is tuned using
a skew parameter, θ. When θ = 0, data is accessed with uniform frequency,
and when θ = 0.9 it is extremely skewed. In order to measure the impact of
transactions running at weaker isolation we introduce an additional parameter,
ω, which controls the proportion of transactions running at Serializable isolation.
The remainder are split between Read Committed (90%) and Read Uncommitted
(10%).
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Fig. 4: Throughput as serializable transactions (ω) varied from 0% to 100%.

6.1 Isolation

We begin with measuring the impact of increasing the proportion of transactions
executing at Serializable isolation from 0% to 100%. This aims to test MSGT’s
ability to leverage its theoretical properties to offer increased performance when
transactions are run at weaker isolation levels. For this experiment, we opt for a
medium contention level, θ = 0.8, and the framework is configured to run with
40 cores.

In Figure 4, SGT’s throughput is invariant to the proportion of Serializable
transactions, this is anticipated as it is unable to take advantage of transactions’
declared isolation levels, in effect, executing all transactions at Serializable. Mean-
while, the throughput of MSGT decreases as ω is increased, converging towards
SGT’s throughput. When there are no Serializable transactions (ω = 0.0), MSGT
achieves a 39% increase in throughput. At ω = 0.4, this drops to a 21% increase
and at ω = 0.8 a 4% gain is exhibited. When ω = 1.0, SGT marginally out-
performs MSGT, this can be attributed to the additional overhead of managing
the MSG. This relationship is reflected in the abort rate displayed in Figure 5a,
across the range of ω, SGT’s abort rate varies from a 3x increase over MSGT’s
abort rate to an equivalent abort rate when all transactions are executed at Se-
rializable. A higher abort rate degrades the user experience, reduces throughput
and, as can be seen in Figure 5b, harms latency.

6.2 Contention

In the next experiment we measure the effect of increasing contention in the sys-
tem by varying θ from 0.6 to 0.9. Contention happens when multiple transactions
try to read or write the same database item. In theory, contention increases the
chance of conflicts between transactions. This should translate into an increase
in the number of edges inserted into the conflict graph. Under SGT all edges
are inserted, whereas, MSGT utilizes isolation levels to be more selective over
edge insertions (only adding relevant or obligatory edges) hence it inserts less
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Fig. 5: Serializable transactions (ω) varied from 0% to 100%.

edges into the conflict graph, and should find less cycles (aborts) compared to
SGT. We set the proportion of Serializable transactions to ω = 0.2. Again the
experiment was run with 40 cores.
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Fig. 6: Throughput as contention factor (θ) varied from 0.6 to 0.9.

Figure 6 displays the throughput of SGT and MSGT as the contention is
increased. As θ increases the throughput decreases for both protocols. For low
levels of contention SGT performs marginally better than MSGT (<1% differ-
ence), but under high contention this reverses and MSGT offers a 24% increase
in throughput. Figure 7a shows that after θ = 0.7, the abort rate begins increas-
ing for both protocols. At the highest level of contention (θ = 0.9), 0.1% of the
data is accessed by 35% of the queries, and SGT aborts 17% more transactions
than MSGT. Lastly, in Figure 7b, above θ = 0.7, MSGT achieves between a 9%
and 28% reduction in the average latency.
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Fig. 7: Contention factor (θ) varied from 0.6 to 0.9.

6.3 Update Rate

For the next experiment, we explore the effect of varying the proportion of
update operations (U) within each transaction. For this experiment, we opt for
a medium contention level, θ = 0.8, set the proportion of Serializable transactions
to ω = 0.2, with the framework configured to run with 40 cores.

From Figure 8 it can be seen that at both extremes U = 0.0 and U = 1.0
MSGT displays no benefit over SGT. When U = 0.0, the workload is read-
only thus no (ww, wr, rw) conflicts are generated. Conversely, with U = 1.0 all
transactions are write-only, hence only ww conflicts can occur, which are always
inserted into the graph under SGT and MSGT. In both cases MSGT is unable
leverage its selective conflict detection rules. However, between the extremities
MSGT is able to produce higher throughput compared to SGT (up to 28% when
U = 0.2).
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Fig. 8: Throughput as update rate transactions (U) varied from 0.0 to 1.0.
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6.4 Scalability

In this experiment we fix the workload factors and vary the core count (1 to 40)
to evaluate MSGT’s scalability compared to SGT. We anticipate that MSGT
scales better than SGT as its scheduler generally performs less work (edge inser-
tions and cycle checking). From Figure 9a it can be seen that until 20 cores the
throughput of both protocols is indistinguishable; in fact, up to 10 cores SGT
exhibits between a 1.2% and 3.1% increase over MSGT. After this point, a gap
appears, at 30 cores MSGT has 13.1% higher throughput and at 40 cores this
difference increases to 27.9%.

In Figure 9b it can be seen the abort rate of the protocols starts to diverge
after 10 cores: SGT has an abort rate of 1.65% and 3.39% at 30 and 40 cores
respectively, whereas, MSGT’s is 0.50% and 1.54%.
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Fig. 9: Core count varied 1 to 40.

7 Conclusion

In this paper we presented mixed serialization graph testing, a graph-based
scheduler that leverages Adya’s mixing-correct theorem to permit transactions
to execute at different isolation levels. When workloads contain transactions run-
ning at weaker isolation levels, MSGT is able to outperform serializable graph-
based concurrency control by up to 28%. Additionally, MSGT scales as the num-
ber of cores is increased, an important property given modern hardware. Like
SGT, MSGT minimizes the number of aborted transactions, accepting all useful
schedules under the mixing-correct theorem, which greatly improves user expe-
rience. As part of future work we wish to extend our performance evaluation to
include industry standard benchmarks such as TPCx-IoT [13] and TPC-C [14].
In summary, this paper strengthens recent work refuting the assumption that
graph-based concurrency control is impractical.
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